CCF: A Framework for Building Confidential
Verifiable Replicated Services

Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury Chamayou, Sylvan Clebsch,
Manuel Costa, Cédric Fournet, Matthew Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak*,
Olga Ohrimenko, Felix Schuster*, Roy Schuster, Alex Shamis, Olga Vrousgou, Christoph M. Wintersteiger

Microsoft Research & Microsoft Azure
April 2019

Abstract—We present CCF, a framework to build permissioned
confidential blockchains. CCF provides a simple programming
model of a highly-available data store and a universally-verifiable
log that implements a ledger abstraction. CCF leverages trust
in a consortium of governing members and in a network of
replicated hardware-protected execution environments to achieve
high throughput, low latency, strong integrity and strong confi-
dentiality for application data and code executing on the ledger.
CCF embeds consensus protocols with Byzantine and crash fault-
tolerant configurations. All configurations support strong service
integrity based on the ledger contents. Even if some replicas
are corrupt or their keys are compromised, they can be blamed
based on their signed evidence of malicious activity recorded in
the ledger. CCF supports transparent, programmable governance
where the power of the consortium members is tunable and their
activity is similarly recorded in the ledger for full auditability.

We are developing an open-source implementation of CCF
based on SGX-enabled Azure Confidential Compute, built on
top of the Open Enclave SDK. Experimental results show that
this implementation achieves throughput/latency tradeoffs up to 3
orders of magnitude better than previous confidential blockchain
designs. Its code and documentation are available at https:
//github.com/Microsoft/CCF.

I. INTRODUCTION

Current blockchain designs do not meet the confidentiality
and performance requirements of many applications [[17], [[70].
For example, Bitcoin [52]] requires about an hour [11] to yield
high confidence that a transaction has committed, and the
public Ethereum network [67] processes only 10 transactions
per second. Meanwhile, Visa averages 2,000 transactions per
second [1]]. In addition, their smart contracts and their full
transaction history are in the clear for anyone to see. Several
recent systems [2], [25], [28], [39], [40], [48] propose more
efficient permissionless blockchain designs based on variants
of Byzantine agreement [[16]], [44]], [S0], [57], but they do not
offer confidentiality guarantees. While some designs leverage
zero-knowledge proofs to hide transaction contents [59]], they
involve expensive proof generation procedures (e.g., over one
minute on a consumer machine [[17]) and often rely on an
undesirable trusted set-up to bootstrap the system.

Permissioned blockchains gain efficiency by leveraging a
stable consortium of members to manage their governance.
They enable much larger sets of users to submit transactions;
for example, a consortium of banks may implement a service

* Work done while at Microsoft Research

for millions of customers. Some of their designs do not address
confidentiality [5], [23] while others provide confidentiality
but relatively low performance (e.g., about 4 transactions per
second [17]).

In this paper, we present CCF, a framework that addresses
these limitations: it provides both confidentiality and high-
performance for consortium-based blockchains. CCF repli-
cates its blockchain operations using a network of hardware-
protected trusted execution environments (TEEs). This yields
high throughput, high availability, and low latency, while at the
same time protecting the integrity and confidentiality of ap-
plication data and code running on the ledger. Although CCF
may leverage any TEE, our initial implementation uses Intel
SGX (Software Guard Extensions) enclaves [49]]. Enclaves
are hardware-protected memory regions that allow trustworthy
execution of code even on untrusted host computers. Some
recent blockchains designs also use enclaves [47], [[71], [72],
[78] but they do not provide confidentiality guarantees.

In CCF, the members of a consortium may not necessarily
trust one another, and need only agree on the service they
intend to run, including its application code, its governance,
and its initial configuration. The configuration comprises the
member credentials and a set of TEE-enabled hosts to replicate
the blockchain. The hosts may be in one or more cloud data
centers, or in the members’ enterprise data centers. Recall
that all hosts support TEEs, irrespective of their locations.
The members’ agreement is consolidated in the hashed digest
of the service code to run within each TEE, which includes
implementations of the CCF protocols, the application logic,
and their supporting runtimes and libraries. Following previous
design patterns [61]], we strive to keep TEE code small and
application-specific in order to minimize our software TCB.
Additionally, CCF could harden code inside the enclaves [12],
[27], [31], [53], [62], [63]] against exploits of side-channels or
memory safety defects.

CCF provides a simple programming model of a key-value
store and a universally verifiable log that implements a ledger
abstraction. CCF developers can write application logic (also
known as smart contracts) in several languages by configuring
CCF to embed one of several language runtimes on top of the
key-value store. Developers can also express flexible policies
as smart contracts that enforce access control. For example,
they can express permissive policies that authorize a specific
participant to perform audit requests over the full transaction

https://github.com/Microsoft/CCF
https://github.com/Microsoft/CCF

graph, and restrictive policies that allow only the parties
involved in a transaction to access its confidential details.

CCF supports consensus protocols with both Byzantine and
crash fault-tolerant configurations, while ensuring that all con-
figurations support strong service integrity (provided the appli-
cation code records adequate information in the ledger) even
if some nodes or their keys are compromised, and specifically
ensuring that compromised nodes can be identified through
evidence of their malicious activity recorded in the ledger.

To allow evolving the service and the rules of its consortium
over time [29], CCF supports a model of programmable
governance running on top of the ledger abstraction. Hence,
the dynamic service configuration—including its members,
replicas, users, application code, and governance rules—is
represented as key-value pairs in the data store, and all gover-
nance operations are recorded on the ledger. In particular, CCF
enables governance-based rule updates, software upgrades, and
service recovery in the face of a disaster that may cause all
replicas to fail.

As a precaution against various compromise scenarios, CCF
carefully restricts the privileges of the TEEs trusted to run its
service and the members trusted to run its governance. To this
end, we consider a variety of attacker models and, anticipating
on the next sections, we address them as follows:

o High performance and availability depend on the oth-
erwise untrusted TEE hosts, their storage, and their
communications network. This risk may be mitigated by
replicating the service between widely distributed TEEs.
Pragmatically, CCF also provides an optional mechanism
to recover from major failures of the replication protocol
itself, subject to governance.

« Confidentiality depends on TEE hardware protection,
combined with application code review and remote at-
testation to ensure that no other code may gain access
to confidential transactions within TEEs. The risk of
hardware compromise is somewhat reduced by using key
rotation, separation, and erasure. In contrast, transactions
are encrypted in the ledger and remain confidential even
if the hosts, the network, and most of the members are
compromised.

o Governance relies on the service members reaching con-
sensus before modifying the configuration. For trans-
parency and auditability, the governance process is
recorded in plaintext in the ledger.

o For long-term ledger integrity, we consider a stronger
attacker model where all TEEs may eventually be com-
promised. To resist such powerful attacks, CCF maintains
a Merkle tree [58|] over the whole contents of the ledger
and systematically records signed evidence in the ledger.
This enables the replay of the service protocols and
the detection of malicious activity by its members and
replicas. In addition to this trust, but check approach,
which is always enabled, CCF’s replication protocol can
be configured to prevent active attacks from less than
a third of the TEEs, using Byzantine fault-tolerance
techniques.

We implemented several blockchain applications with CCF.

In some of the applications, we aimed for functional com-

patibility with Ethereum and ran an implementation of the
Ethereum Virtual Machine (EVM) that stores state in CCF’s
data store. Experimental results from running these appli-
cations on SGX-enabled VMs in Microsoft Azure show
that they achieve two orders of magnitude more throughput
than the current public Ethereum network, while provid-
ing confidentiality. For another application, we did not set
any compatibility requirements and aimed for simplicity and
high-performance. Experimental results show that it achieves
throughput that is orders of magnitude better than previous
confidential blockchain designs.

Contents. Section [II] provides background on TEEs and repli-
cation protocols, and also sets up notations. Section [III| gives
an overview of the protected service, describing its store, its
programming model, and its governance. Section |[V| presents
our TEE service protocols. Section |V|details the ledger format
for integrity and confidentiality. Section |VI| presents our repli-
cation protocols. Section discusses our implementation.
Section evaluates it using sample applications. Section
discusses related work on blockchains. Section [X] concludes.

II. BACKGROUND
A. Trusted Execution Environments (TEEs)

TEEs provide a means for the attestable, privacy-preserving,
and integrity-protected execution of sensitive programs within
otherwise untrustworthy systems. A range of TEE architec-
tures has been proposed [22f, [26]], [56] and commercially
deployed [6], [36], with Intel SGX [21]], [49] being one of
the most comprehensive and prevalent commercial implemen-
tations. Hence, we focus on SGX as TEE provider.

SGX is a recent addition to the x86-64 instruction set
architecture. It enables the dynamic creation of enclaves within
the virtual address space of user mode processes. An enclave
can be initialized with arbitrary code and data. The initial
state (i.e., code and data) and configuration of an enclave
is recorded by the CPU into a cryptographic digest called
a measurement. Once an enclave is initialized, the CPU
prevents all other software (including the hypervisor, operating
system, and host process) from accessing the enclave’s mem-
ory range. However, enclave code can still access its host’s
entire address space, enabling efficient communication with
the outside world. To protect against hardware attackers, the
CPU transparently encrypts and integrity-protects all enclave
memory before writing it to RAM.

An enclave exposes one or more fixed entry points that can
be invoked by the untrusted host. While executing enclave
code, system calls are not available. Thus, the enclave returns
control to the host for performing any network and file I/O.

Two essential features of TEEs are sealing and remote at-
testation [4]. For these, each SGX-enabled CPU is provisioned
with root hardware secrets, used in particular to derive a
signing key for its unique platform identity (written ¢ below)
and separate keys based on code identity (written C below).

Sealing allows an enclave to protect private data using
authenticated encryption under a key derived from a hardware
secret and its code identity. The resulting ciphertext may then
be passed to the untrusted host and written to disk. It can

be unsealed only by an enclave running the same code on
the same platform (possibly after a power-down cycle). We
write Seal,[C](m) for sealing data m on platform ¢ for code
identity C and Unseal,[C](v) for the corresponding unsealing
of ciphertext v. The latter operation may return a decryption
error. Remote attestation allows an enclave to convince a party
that it (i) runs on an SGX-enabled platform ¢, (ii) has code
identity C, and (iii) produced message m. For this, abstractly,
platform ¢ issues a signed certificate QSig,[C](m), which
binds ¢, C, and m and is also referred to as quote. Quotes are
used in particular to establish secure communication channels
with mutual authentication between enclaves.

(As explained in Section[[V} CCF security crucially depends
on the remote attestation of the nodes running the service, but
it depends on sealing only for reporting node failures.)

Weaknesses. A single vulnerability, e.g., a memory corruption,
in enclave code can void all privacy. As mitigation, variants
of software fault isolation have been proposed [61f, [63].
Further, recent research [[13], [[15], [45], [68], [69] finds the
SGX architecture susceptible to different side-channel attacks
and proposes mitigations [[12], [27]], [31], [53], [62]]. Such
vulnerabilities in enclave code and side-channel attacks are
out of scope in this report.

B. Crash-Fault and Byzantine-Fault Tolerant Replication

CCF implements its data store across multiple computing
nodes using a replication protocol [42]], which may be config-
ured to withstand a range of failures and attacks:

o Crash fault-tolerant replication (CFT) protocols assume
that each node runs the protocol correctly, and ensure
safety when nodes are unresponsive or the network is
lossy. They also ensure liveness whenever a (strict) ma-
jority of nodes communicate with one another, under a
weak synchrony assumption [|16].

« Byzantine-fault-tolerant (BFT) protocols provide addi-
tional protection against misbehaving replicas [16]]. They
ensure safety and liveness in a stronger attacker model
whereby (less than a third of) the nodes are compromised.
These guarantees come at the cost of additional replicas
and additional checks during protocol execution.

These protocols may support dynamic re-configuration, using
subprotocols for adding nodes and removing nodes [43|.

CCF uses a form of state machine replication [60] that can
be implemented using any replication protocol that provides
the API specified below. Section [V]explains how we strengthen
the protocol to enable signature-based universal verifiability
and auditing. Section [VII|describes the current implementation
of the replication protocol.

Replication API. We define a local interface within TEEs
between the replicas and the rest of the code running service
protocols. (In contrast, more abstract presentations usually
provide a single abstract interface that hides the transient local
state of the replicas.)

From this interface, the visible state of each replica consists
of a log of transactions y and a commit index ¢ within that

log. The stable part of the log is its prefix up to the commit
index. In state (p,c) with ¢ < |ul,

« any node can propose an extension, written g ~> u; p.

« any replica can update its local state, in three ways: extend
the log, by applying any prior proposal that extends u;
truncate an uncommitted suffix of the log, as long as
¢ < |ul; or advance the commit index, as long as all
stable logs are consistent (i.e, the logs of all replicas with
commit index ¢ > n agree on their first n transactions.).

This specification captures abstract integrity and consistency
properties, while hiding all messages and internal protocol
details. For example, a correct replication protocol will ensure
that proposed extensions are sufficiently replicated before
advancing the commit index, so that they can reliably be
restored after a crash.

A further simplification would be to hide any uncommitted
transactions, and provide read access only to the stable part of
the log. However, this may be somewhat misleading for con-
fidentiality (as clients may observe the effect of transactions
before they are committed) and inefficient (as nodes would
have to wait for commitment between transactions).

The replication protocol starts with a single node with local
state ((),0). Its interface supports reconfiguration: one can
add nodes (e.g., with an empty log, or by cloning the state
of another replica) or remove nodes (keeping the stable part
of their state for consistency). It also enables some form
of verifiability. For example, every node may embed their
signature in each of their proposals, so that anyone may later
check the log and (potentially) blame bad transactions on their
proposers. The logged transactions may include additional
evidence, such as signed messages of the replication protocol,
so that the ledger may also enable verification of commitment,
consistency, and protocol reconfiguration. Section [VI| presents
our protocol and its verifiability properties in more detail.

III. A TRUSTED SERVICE AND KEY-VALUE STORE

CCF runs a service on top of a replicated key-value store,
aiming to provide the same security guarantees as an ideal
trusted third-party server. We present below the service func-
tionality and programming model at the application level. The
supporting protocols are described next in Sections

The service is defined by application code that programs
a set of commands to operate on the key-value store. It
accepts connections from clients and, once authenticated,
executes commands on their behalf. The service implements
the commands as atomic transactions over the key-value store;
it ensures their serializability and it persists their effects in the
store. One may reason about the security of the service by
reviewing its application code. For instance, one may verify
that the commands correctly enforce access control based on
the client identity before reading or updating the store, and
that they all preserve the application invariants.

In the following, we use two application examples: a basic
Bitcoin-like service for transferring money between accounts
and a more advanced Ethereum-like service that runs stateful
EVM smart contracts.

A. The Clients

We consider clients in two roles. Users can run the applica-
tion commands of the service. For example, for the simple
Bitcoin-like payment system, they can read the balance of
their account, and they can transfer money from their account
provided it remains in credit. Users may be compromised, and
may thus leak or modify application data, subject to the access
granted by the application.

Members can run privileged commands to manage the ser-
vice using its governance module. They are jointly responsible
for endorsing the service and managing its configuration (e.g.,
its users and members) through votes. Members and users
are usually distinct actors. The same governance module
is included in every CCF service, with some governance
configuration. It is independent from the user application.
Members may also be compromised, and may collude with
users. However, some security guarantees of the service will
depend on a quorum of its members being honest.

B. The Store

The store is a collection of tables. Each table has a unique
name and records key-value pairs with fixed datatypes. We
write k — v for a pair with key k£ and value v.

The store is divided into application tables and governance
tables, the latter including primitive tables that record the
current configuration of the underlying service protocols. For
instance, a NODE table keeps track of trusted TEEs.

Application tables. Each application defines its own collection
of tables. For example, our simple Bitcoin-like application uses
an ACCOUNT table to keep track of user-balance pairs of the
form v — z. In an Ethereum-like application, a more complex
table maps account numbers to smart-contract code and state.

Governance tables. These tables are the same for all services.
They are explained throughout the paper, with a summary of
all tables given in Table We begin with tables that define
the current clients of the service:

USER stores u — cert,, rights,, for each active user, where u
is a unique user identifier, cert,, is her identity certificate,
and rights, represents her access rights, such as the
application commands she may call.

MEMBER stores m — cert,,, ksk,,, status,,, for every service
member, where m is a unique member identifier, cert,, is
her identity certificate, ksk,, is her keyshare encryption
key (see Section , and status,,, is her current status.
Entries in this table are never deleted to ensures member
identifiers remain consistent for the lifetime of the ser-
vice. Instead, their status may be updated from accepted
(proposed by their peers) to active (authorized to run all
governance commands) to retired.

Confidentiality. Depending on the application, the service
definition also sets the confidentiality of each table.

Tables are either public or private. Public tables can be
read by any client; the service protects the integrity of their
contents. Private tables are annotated with a confidentiality
label; the service keeps their contents encrypted using separate

keys, and provides access only via its programmed commands.
Typically, most application data is private, whereas most
governance data is kept public.

C. The Ledger

To enable replayability of the service, CCF persists the
history of the store in a tamper-proof ledger. Consider for
example a frequently-updated table. The application only gives
access to the current values of each key (kept in protected
memory by the TEEs) whereas the ledger also keeps tracks
of any overwritten values. This lower-level view of the store
matters mostly for security and auditing.

Each command produces a sequence of key-value updates
in various tables; as its transaction completes, this sequence
is appended to the ledger. We let 7 range over transactions
(a sequence of key-value updates that records the effect of
a command) and p, p range over sequences of transactions.
Updates to private tables are encrypted in the ledger, whereas
updates to public tables are only integrity protected.

We will use p to represent the whole ledger contents, and p
for ledger updates passed to the replication protocol interface
as described in Section Hence, the state of the store S is
a function of u. The ledger format and its security properties
are described in Section

D. Public-Key Infrastructure

CCF provides native support for public-key certificates
and signatures. To this end, the service embeds a certificate
store that records certificate-chain validation policies, autho-
rized roots and intermediate certificates, and recent certificate-
revocation lists in the governance tables CERTCONFIG, CERT
and CRL, respectively. CCF validates all certificates and sig-
natures against their contents in the store. This ensures their
processing can be replicated and replayed.

Although some applications may choose to record simply
self-signed certificates, or even just public keys, it is con-
venient to rely on existing PKI mechanisms for certificate
issuance, management, and revocation. This approach also
enables simple integration with the credentials used by TLS
for mutual authentication between CCF clients and nodes.

In the following, we write {u : request}, {m : request},
and {n : msg} for signature tags issued by users, members,
and nodes using the key identified by the certificate currently
stored in the USER, MEMBER, and NODE governance tables.
All requests signed by clients implicitly include a service
identifier, to prevent any ambiguity between different services.

E. Remote Procedure Calls

We now describe commands in more detail. Clients com-
municate with the service via several RPC interfaces, always
relying on TLS 1.2 to establish a secure channel with mutual
authentication and forward secrecy. The client’s certificate
chain is checked against the contents of the USER table (or
the MEMBER table, for governance commands) and the current
state of the certificate store, whereas the server presents a TEE-
quote certificate endorsed by the service key (see Section [[V)).

App.Transfer (caller: target, amount) {
// the service authenticates the caller
assert (exists (ACCOUNT [target]))
assert (amount <= ACCOUNT[caller]);

ACCOUNT[caller] —-= amount
ACCOUNT [target] += amount
}

App.GetBalance(caller) { return ACCOUNT[caller] }

App.SignedTransfer (caller: target, amount, sig) {
// the service verifies the caller’s signature
assert (exists (ACCOUNT [target]))
assert (amount <= ACCOUNT[caller]);

TRANSFER[] = sig

ACCOUNT [caller] —-= amount

ACCOUNT [target] += amount
}

Listing 1. Pseudocode for Bitcoin-like application RPCs.

The service API is largely application-specific. It can be
statically programmed in the TEE code (using e.g. C++), but
it can also rely on scripts supported in that code (using e.g. Lua
or EVM). Static code may be easier to review, whereas scripts
offer more flexibility: they can be stored by the service and
updated as part of its governance, or even passed as command
parameters. In this presentation, we simply rely on pseudocode
for all programming examples.

A first command example. A possible (partial) implementation
of our Bitcoin-like example is given in Listing [T} The store
uses an ACCOUNT table with user identifiers as keys and posi-
tive amounts as values. The service implicitly authenticates the
caller as one of its currently-registered users. By convention,
the authenticated client identifier is passed as the first argument
of every command.

The command for transfers takes a target account and an
amount as additional arguments; it checks that the source
account has enough credit, then it updates both accounts. Its
transaction semantics ensures that these checks and updates
are atomic. The second, read-only command just returns the
current balance of an account.

Signed Requests. In the transfer command of Listing [I] the
ledger records two updated key-value pairs. By replaying it,
one can verify its correctness (checking that all transactions
are indeed valid transfers) but not user authentication.

To this end, the service may additionally require that the
command requests be signed—by convention, the signature
tag sig is then passed as the last argument of the command.
The service then also implicitly verifies this signature over the
other arguments of the request using the stored credentials of
the caller before executing the command.

Continuing with our example in Listing [2] the received
signature sig is verified as {caller : target,amount}
then recorded in an auxiliary table TRANSFER. This table does
not have a key, hence its value is overwritten by every transfer,
but the resulting transaction in the ledger now records both the
account updates and the supporting signature.

Signed requests involve additional cryptographic processing
for the service and its clients (which may otherwise rely on
long-lived connections for issuing many commands). Depend-
ing on the application workload, they may be required only
for selected commands. Note also that the command code
is responsible for storing the signature value together with
sufficient context (so that it can be re-verified) within tables
at an adequate level of confidentiality, subject to client privacy
considerations.

Listing 2. A variant illustrating signed persisted requests.

Early Results and Confirmations. By design, the service
immediately returns the result of each RPC as the command
completes, with the important caveat that this result may still
be rolled back if the TEE that executed the command crashes.
(The result implicitly includes the tentative serialization index
of the command in the ledger.) If the command updated the
store, the server runs in parallel the underlying replication
protocol to propagate, persist, and eventually commit the
resulting transaction (see Section [VI).

Clients can later query the commit state of their transactions
using a separate GetConfirmation RPC. Optionally, this
RPC also returns a signed receipt for committed transactions,
providing independent evidence that the command was indeed
executed by the service at a given index in the ledger and
produced the previously-returned results (see Section [V).

Handling RPC failures. RPCs may fail to return a result for
a variety of reasons, such as client crashes, node crashes,
connection failures, or timeouts. In such cases, the client
may still need to determine whether its command has been
executed or not before issuing its next command. To this
end, the application command should record unambiguous
information in the transaction, such as a sequence number or
unique identifier provided by the client.

The client may also track the current state of the service.
When it connects, and before submitting any command, it
receives the current view (described in Section and po-
sition in the ledger. When it submits a request, the resulting
transaction may be recorded only in this view and after this
position. The optional client signature may cover the view and
position as well as the request to ensure verifiability of this
restriction.

If the RPC fails, the client reconnects (possibly to a different
node): if the same view is still running, then a lookup based
on the identifier will return up-to-date information about the
command based on the local store. Otherwise, the client may
wait for at least one transaction committed in the next view,
so that the ledger includes a full record of the only view that
may have recorded the client command.

F. Governance

To further illustrate our programming model, we describe
the main commands used for governing the service.

Members have access to the governance RPC interface,
whose code is set in C and parameterized by scripts stored
in the RULE table. The interface comprises commands Read,

Gov.Read(caller: table, keys) {
assert (MEMBER [caller].status in {accepted,
assert (isGovTable (table))

activel)

return multiRead (table, keys)
}
Gov.Propose (caller: action, sig) {
assert (MEMBER [caller] .status = active)
assert (wellFormedProposal (action))
pid = size (PROPOSAL) - 1
PROPOSAL += (caller, action, sig, status=open)
return pid
}
Gov.Vote (caller: pid, condition, sig) {

assert (MEMBER [caller] .status = active)
assert (wellFormedCondition (condition))
assert (PROPOSAL [pid].status = open)
VOTE [caller, pid] := (condition, sig)
}
Gov.Complete (caller: pid) {
assert (PROPOSAL [pid].status = open)

tally = 0
foreach (v in VOTE, v.pid = pid)
// check status and condition
if (MEMBER[v.voter].status = active &&

execReadOnly (v.condition())) tally++
assert (RULE ["quorum"] (pid, tally));
PROPOSAL [pid] .status := passed
exec (PROPOSAL [pid] .action)

}

Gov.Ack (caller: i, rho, sig) {
assert (MEMBER [caller] .status <> retired)
assert (rho = ledgerRoot (1))
if (exists (MEMBERACK[caller]))

assert (MEMBERACK [caller].i < 1)

MEMBERACK [caller] = i, sig
if (MEMBER[caller].status = accepted)
MEMBER [caller] .status := active

Listing 3. Pseudocode for parts of the governance RPC interface.

Propose, Vote, Complete, and Ack, whose pseudocode
is given in Listing [3]

The Read command allows members with status at least
accepted (see Section to review the governance tables,
for instance to obtain the current list of members and their
credentials. (The interface may also support the read-only
execution of member scripts on these tables.)

The other commands enable transparent governance of
the service, by reaching joint decisions and implementing
them as updates on its primitive tables. For verifiability, all
these commands require signed requests from active service
members. They operate on the following tables:

PROPOSAL records p — m, action, {m : action}, status when
member m proposed to run action. Actions are restricted
scripts that update selected governance tables after per-
forming various checks. Proposals are implicitly keyed
by their insertion index p. The status of each proposal
evolves from open to either passed or withdrawn. Except
for their status, proposals are never updated or deleted.

VOTE records m,p — condition, {m : p, condition} when
member m voted on proposal p. Each vote includes a
read-only script to support conditional voting. Votes may
be updated as long as their proposal is open.

MEMBERACK records m — ¢, {m : i, p;} when member m
acknowledged witnessing the service running at transac-
tion index i with Merkle-tree root p; (see Section [V).

RULE ["quorum"] :=

lambda (pid, tally) {
voters := 0;
foreach(m in MEMBER, m.status = active) voters++

if (touches (RULE, PROPOSAL[pid].action)
// changes to rules require unanimity
return tally = voters
if (touches (MEMBER, PROPOSAL[pid].action))
// changes to members require super—majority
return tally > 2 % voters / 3
(...)
else
return tally > voters / 2

Listing 4. Sample governance rule defining vote quorums.

foreach(m in MEMBER, m.status <> retired) members++
if (getTxIndex()) > 11054442 s&&
PROPOSAL[5543] .status = passed &&
members < 10)
return true
else
return false

Listing 5. Sample pseudocode for a vote script

These member signatures are stored to track the liveness
of the service members and their endorsement of rela-
tively recent states of the ledger, which may be useful
input for governance and auditing.

RULE records name — condition to define named auxiliary
scripts executed as part of governance.
As an example, Listing] outlines pseudocode for a rule
to determine if a quorum of members is met to pass a
proposal, depending on its proposed action.

Members call Propose to record their new proposed action.
As shown in Listing [3] the command first checks that the
proposer is an active member and that the script is well-
formed, enforcing that it reads and updates tables within the
scope of governance. For example, an action may add a new
entry to the MEMBER only with a fresh member identifier,
valid credentials, and status accepted; and it may update an
existing MEMBER record only by setting its status to retired.
A single action may include multiple such updates, ensuring
their atomic execution. The command then records the signed
action as an open proposal at the next available index pid in
the table and returns that index.

Members call Vote to record (or modify) their vote on
open proposals. The vote consists of a read-only script that
returns t rue if the member approves the proposed action. In
general, the script includes additional checks on the state of
the store—this mechanism enables the service to check that
all conditions set by the proposer and the voters are met at
the time the action is executed. For example, when voting on
a proposal to add two new members, the voter condition may
require that (1) the decision is made before reaching a given
transaction index; (2) another proposal has been passed; (3)
the current number of accepted and active members is less
than 10. The corresponding script is outlined in Listing [3}

Any member may call Complete to tally the votes and

determine if they suffice to pass a proposal. This command
checks that the proposal is still open, runs all its recorded pre-
conditions, then calls the script stored at RULE “quorum” to
determine the number of positive votes required, depending on
the contents of the proposed action. If all these steps succeed,
the action is executed and the proposal status is updated from
open to passed. Thus, each proposal is executed at most once.
(We omit here a command for updating proposals that fail to
pass from open to withdrawn.) Note that all past and present
proposals and votes are persisted in the store, enabling their
detailed public auditing.

Finally, members regularly use Ack to confirm their par-
ticipation in a service and endorse its state with a recorded
signature. (The command checks that the member is not
retired, that the signed endorsement correctly authenticates
the ledger up to index %, and that it does not overwrite
any previously-recorded endorsement.) In particular, accepted
members need to explicitly acknowledge their participation to
become active and thus gain access to Propose, Vote, and
Complete.

The scripts stored in RULE may themselves be changed
through a proposal. Listing [] illustrates that such updates
may require a super-majority. As shown in the next section,
momentous decisions, such as the creation of a new service,
may even require member unanimity.

IV. SERVICE PROTOCOLS

Next, we describe our protocols for creating a node, for
starting the service, for enrolling nodes in a service and remov-
ing them again, for rekeying the service, and for recovering
the service after a major outage.

A. Creating a Node

The (untrusted) host for platform ¢ creates a CCF node n
by initializing a TEE with static code C and arguments « that
include the unique identifier id, of the intended service. The
code C follows the state-machine depicted in Figure [I] When
invoked in its initial booting state, it runs the following steps:

1) generate a signing key-pair pk,,, sk, for the node;

2) obtain a quote qt,, = QSig,[C](a | pk,,) from g;

3) output rp,, = Seal,[C]({n : retire id,});

4) transition to state created.
The public key pk,, identifies n; it is used for TLS server
authentication and for verifying protocol messages signed by
this node; the corresponding signing key never leaves its TEE
instance. The quote qt, attests that n runs in a TEE on
platform ¢ with code C, arguments «, and key pk,,. The sealed
signed message rp,, enables an accelerated node-replacement
procedure described in Section

In state created, the node is not yet part of a service. It
accepts a single call from a TLS client, exposing an interface
with functions to either Start or Join a service, described
in Sections [TV-B] and [V-D] respectively. It then transitions to
state trusted, or pending in case it does not have the service
secrets yet, or down if the call fails. Hence, a node can only
become part of a single service throughout its lifetime.

=
- | pending |—>| trusted |—>| retired |
Join(...) 4

Fig. 1. State diagram for a node; states while part of a CCF service are blue
(hatched). While in state trusted, a node is also part of the service’s replication
protocol (see Section [VI). The corresponding sub-states are pink (solid). In
case of a fatal error, each state directly transitions to down.

booting |—| opening ., open closed

Fig. 2. State diagram for a service; in state opening, only the RPC interfaces
for members and nodes are available; in state open, in addition, the user RPC
interface is available. In case of a fatal error, each state directly transitions to
closed.

B. Starting a Service

The Starting protocol involves primitive tables that track
the service configuration:

SERVICE stores 7 — cert,,status, where r is a recovery
index (starting at 0), cert, is the public-key certificate
of the service, and status, its current status. The table
holds the full history of the service’s long-term signing
keys. Except for the status updates given in Figure 2] its
entries are never modified or deleted. The entry with the
highest index is active.

NODE stores n — pk,,, qt,,, netinfo,,, sc,,, status,, where n is
a unique node identifier (integers counting from 0), pk,, is
its signature-verification key, qt,, is its remote attestation
quote, netinfo,, is its hostname and port, sc, is an op-
tional shutdown certificate for a prior node on platform ¢
(see Section , and status,, is its status, ranging over
pending — trusted — retired (see Figure [T). Similarly,
the table holds the history of past and present nodes for
the service, and only its status field is mutable.

CODEID stores v — H(C,) where v is a code version number
and H(C,) is the corresponding code digest. The entry
with the highest version is active. The table records the
digests used for verifying quotes from nodes as they join
the service. It enables code update, subject to governance.

The Start command takes as argument the initial state of the
key-value store as transaction 7 that initializes the governance
tables MEMBER, USER, RULE, CERTCONFIG, CERT, CRL, and
any application tables. It runs the following steps:

1) generate the service key-pair pk,,sky, its intermediate
certificate cert,, and its first data-encryption secret sg.

2) validate 71, for instance checking that all initial MEMBER
entries have valid credentials and an accepted status;

3) transition to state trusted and start the replication protocol
with itself as (single) primary replica: as detailed in

Section [VI] this writes a first transaction in the ledger
that initializes the replication protocol-specific tables with
a single entry NODE 0 — pk,,, qt,,, netinfo,,, sc,,, trusted
for the starting node. Until more replicas join the service,
all transactions commit immediately.

4) write initial entries SERVICE 0 — cert;,opening and
CODEID 0 — H(C) followed by 7y;

5) start the service.

C. Opening a Service

The service uses its signing key and intermediate certificate
to issue certificates for the public keys pk, of each of its
trusted nodes—initially just the starting node. This enables
clients to authenticate any of these nodes as part of the service
before issuing commands.

In state opening, the service accepts governance commands
to complete its bootstrapping. Its initial members (defined by
MEMBER records in 71) can connect to the primary, check the
certificates it presents, call the Ack command to upgrade their
status from accepted to active, and start governing the service.
The service also accepts connections from nodes attempting
to join the service, as described in Section Conversely,
users cannot yet connect to the service.

Once the members are satisfied that the service is suf-
ficiently replicated and that its configuration is trustworthy,
they can use its governance commands to propose, vote, and
complete the update SERVICE[0].status = open. This fully
opens the service and enables its application commands.

D. Adding a Node to a Service

The Join command takes as arguments the service certifi-
cate cert, and the network address of a node already trusted
to run the service. The joining node n connects to the service
with mutual authentication, presenting its fresh qt,, as client
credentials and verifying the quote-certificate and its endorse-
ment by the service certificate cert, presented by the server.
Then, using this secure channel, it sends netinfo,, and sc,
to the service; within a transaction, the service validates qt,,
against the latest code digest recorded in CODEID and the state
of its certificate store, and then adds a NODE entry for n with
state pending. In this state, the node begins receiving state
updates from the service, enabling it to replicate its ledger,
but is not yet part of the replication protocol, and does not yet
have access to the service secrets.

The join protocol resumes when the new node gains status
trusted through governance. This authorizes the service to
share the service signing key sk, and encryption secrets sy
with the new node over their secure channel and, finally, to
reconfigure the replication protocol with the joining node as
active replica.

The join protocol can be simplified in several cases, en-
abling new nodes to join as trusted after validating their quote
but without a full round of governance.

e In state opening, the service can immediately accept
new nodes, since the members will review them before
opening the service.

o The new joiner may provide additional evidence that it
is replacing a node on the same platform ¢, for instance
after a shutdown of its host or a code update. As long
as the prior node is currently trusted by the service and
signed that evidence, it can be seamlessly replaced by its
successor.

This additional evidence may be either a shutdown cer-
tificate sc,, (Section [[V-E) or a retire certificate rp,
(Section [TV-A)), necessarily unsealed by a node with
code C created later on platform ¢. In both cases, the
transaction that records the new node as trusted also
records the evidence and marks its predecessor as retired.

E. Removing a Node from a Service

A node can be removed from a service through governance
by updating its status to retired in NODE, as a result of a
planned shutdown or a crash. In all these cases, the node
attempts to complete the following steps:

1) transition to state retired;

2) create a shutdown certificate sc,, = {n : shutdown id, };

3) erase its state and return sc,, to the host.

The service accepts calls to report shutdowns and, after
verifying sc,, against NODE[n], it records the evidence and
updates the node status to retired. Keeping track of shutdown
certificates accelerates node replacement, and also yields some
forward secrecy, as a retired node cannot leak any secret.

F. Rekeying a Service

To limit the scope of key compromise, the service supports
updates of its data-encryption master secret sqg. As part of
governance, such an update may be triggered after a service
reconfiguration, so that only the nodes trusted after the recon-
figuration have access to newly-encrypted data. Updates are
tracked by an auxiliary governance table:

SECRET stores d — (aenc[k”](d, Sq))n trusea Where d is the
rekeying index (counting from 1) and, for each currently-
trusted node n, aenclk?](d,sq) encrypts the dth data-
encryption secret under a key established between n and
the current primary r. The entry with the highest index
indicates which secret to use for data encryption in the
ledger after the transaction including this record.

To update the key, the current primary increments d, samples
a fresh secret s4, encrypts it for each currently-trusted backup,
and writes the resulting entry to SECRET. The replication
protocol ensures that, as the rekeying transaction commits, all
trusted nodes get access to the new secret and start using it
from the same transaction index. (The ledger is used here as
a public reliable transport.) Wrapping this secret by authenti-
cated encryption under ephemeral keys separately established
between nodes provides additional protection against long-
term TEE compromise.

G. Recovering a Service

A service that suffers more node outages than its replication
protocol can withstand safely stops to make progress, and
requires privileged intervention of its consortium to resume.

We describe an optional protocol that allows members to
recover a service from a ledger, even if none of a service nodes
are live. The protocol depends on the availability of a recent
copy of the ledger, and may cause the loss of transactions
not recorded in any available copies. It also supposes that the
members confirm that the service has actually stopped before
enabling its recovery.

The protocol uses an additive key-sharing scheme, enabling
a key-wrapping key k., to be split into multiple shares—one for
each active member—so that a quorum of shares yields back
k. and the shares otherwise leak no information about k. (The
size of the quorum can be configured as part of governance.)
The protocol relies on an additional public table:

SHARE stores

z — aenclk;](so, - - ., Sq), (share,, (idz, 2, k")) m active
where z is the keyshare index, k, is the zth shared key-
wrapping key, d is the rekeying index, sg,...,Sq are
the secrets used for encrypting the ledger so far, and,
for every entry m — cert,,, ksk,,, active in MEMBER,
share,,, (id, z, k7*) encapsulates m’s share of k, under
her public key ksk,,.

If key-sharing is statically enabled in C, every time the
members complete a proposal to share the service encryption
secrets, the service (1) increments z, (2) generates a fresh
key k., (3) encrypts the relevant secrets sy under k., (4)
splits k into shares k7" for the currently active members, (5)
encrypts those shares under their recorded public keys, and (6)
records the resulting new SHARE. As for rekeying, the ledger
provides reliable delivery of encrypted keying materials.

The recovery protocol is a variation of the starting protocol:
as described in Section the service starts and generates
fresh keying materials, including a new public-private keypair,
intermediate certificate, and data encryption secret, and it starts
accepting both new joining nodes and governance commands.
The key differences are as follows:

o Instead of starting with an empty ledger, the service
resumes from an existing ledger, reads it, validates it,
reconstructs the state of its public tables, increments
the recovery index r, and writes a resumption entry
SERVICE r — (cert], opening) followed by 77.

o The current state of the ledger indicates in particular (the
indexes of) the prior data encryption secrets necessary
for completing the recovery and the acceptable encrypted
keyshares that enable it.

« Once the service is opening, the members selected for
recovery (as defined by MEMBER in the ledger updated
with 7{) connect to the service and, using its governance
commands, review the proposed state for recovery. Once
they are satisfied with its configuration, they release their
expected share to the service and vote for re-opening it.

o Trusted with a quorum of shares, the service can then
decrypt the prior encryption secrets, decrypt and process
encrypted entries in the ledger, reconstruct the state of its
private tables, and finally update its status to open.

By design, the recovery attempt fails unless a quorum of
members actively participate and contribute their key shares.

Also, the service resumes with fresh nodes and a fresh public-
key service certificate, preventing client confusion.

(A variation of this recovery protocol does not require
members to be trusted with key shares, but it requires instead
at least one surviving replica to run the recovery and share the
prior service secrets with new replicas.)

V. LEDGER ENCRYPTION AND VERIFIABILITY

Next, we present our mechanisms for auditability and uni-
versal verifiability, to support strong service integrity even if
some of the nodes or their keys eventually get compromised.

As usual with blockchains, these guarantees stem from
reaching a consensus on (a stable prefix of) the ledger. To this
end, replicas exchange and store signatures over the whole
ledger contents, represented as the root of the binary Merkle
tree for all its serialized transactions—see also Section [VI

We use a Merkle tree [|58]] instead of a linear chain of hashes
to enable logarithmic access to past transactions. As a first
approximation, the tree is never updated, only extended with
new transactions added to the ledger (see Section [[I-B). Using
a tree is convenient in our setting because most clients are
not expected to keep a full copy of the ledger. Instead, they
can select their own level of abstraction, keep a local copy
of the transactions they care about, together with intermediate
hashes in the tree and recently-signed roots of the tree, and
use them as independent evidence of the correct execution,
ordering, and commitment of these transactions in the ledger.

A. Ledger Encryption and Transaction Hashes

Recall that confidentiality is configured as part of the service
definition, enabling application trade-offs between privacy
and transparency: each table is optionally labelled with a
confidentiality level ¢, and is otherwise considered public.

For each transaction, all data with label ¢ is encrypted
using a key specifically derived from the current service
encryption secret: kﬁ)i = KDF/[sy](£|v]i) where KDF is
a key derivation function, v is the current view, and i is
the current transaction sequence number in the ledger. (The
replication-protocol view is included in the derivation context
to ensure that every key is used at most once for encryption.)
After partial encryption, the transaction is hashed and inserted
in the Merkle tree. Hence, the ledger authenticates the whole
sequence of transactions while hiding parts of their contents.
The main benefit of using separate keys is to enable release
of data in the ledger at the granularity of single transactions.
In particular, kfﬂ}i may be released to ¢’s client so that it may
independently verify the recorded outcome of its command.

For simplicity, we present the ledger format with a single
confidentiality label. After formatting, every transaction con-
sists of two bytestreams of key-value records in public and
private tables, respectively:

no=

where 7 and the length of 7/ are public, whereas the content
of Tf is confidential. In the ledger, the transaction record is

/!

= 70| encrypt[k!)(7))

Using encryption in counter-mode, 7; and 7/ have the same
length, which enables efficient in-place processing.

In the Merkle tree, the transaction is logged by inserting at
position ¢ a hash tag computed in two steps:

hi H(bind[k; ;] | encrypt[k; ;](7/))

h; H(Tz'o ” hf)

where bind[kfi,i] cryptographically binds the key kfi)i to ensure
that ciphertext authentication implies plaintext authentication.
Otherwise, a malicious primary might return to the client a
forgery k* # ki ; and 7/* = decrypt[k*](encrypt[k ;](7]))).
In counter-mode, bind[kﬁ}i] may simply consist of the encryp-
tion of a constant block at counter 0, with the encryption of 7/
starting at counter 1.

We assume our encryption scheme (including the binder)
provides indistinguishability against 1-time fixed-sized chosen
plaintext attacks. In combination with key binding, signature-
and hash-based authentication, this yields authenticated en-
cryption for the whole ledger.

B. Signed Receipts and Confidentiality

For every command to be independently verifiable, the
application programmer must ensure that both the request and
the response are computable from the resulting transaction 7;.
This can be trivially coded by recording them in auxiliary
tables REQUEST and RESPONSE within the transaction, with
more compact, application-specific encodings available for
most commands (see e.g. Listing [2).

We complete the description of client RPCs of Section [II-E]
by explaining the early results and signed confirmations re-
turned by the service. As the primary completes the trans-
action, it immediately returns to the client its index ¢ and
partially-encrypted encoding 7/ being recorded in the ledger.
(In principle, it may also replace parts of the transaction not
meant to be returned to the client with their hashes.) This
binds 7; to the (provisional) ledger contents, but does not yet
grant the client access to its confidential parts. Later, once
the service has committed the transaction, it returns to the
client both signed evidence of its commitment in the ledger
and the specific keys used to unseal the confidential parts of the
response previously encrypted in 7;. Although the application
might grant earlier access to the encrypted response, releas-
ing confidential information only for committed transactions
facilitates reasoning since the ledger records any such release.

The primary issues all command confirmations based on
its latest signed root of the ledger, at some transaction index
7 > 1, without recalling any details of past transaction process-
ing. The most basic signed confirmation for a client command
that produced 7; thus consists of (p,v,j,{p: v,7,p;}) where
p, v, j are the current primary, view, and index and where
p; is the root of the tree including all transactions up to
index j, together with log(j) intermediate hashes to recompute
p; given the leaf h;. As detailed in the next section, a more
comprehensive confirmation also includes indexes k € i..j,
signatures {b : v,k,pi}, and intermediate hashes to verify
roots signed by backups b, providing evidence that a quorum
of replicas agree that 7; committed in the ledger at index .

Given 7; and its key kfﬁi, the client can first recompute h;

then, using the intermediate hashes, the roots pj, and finally
verify their signatures. Given 77, h{, and any such receipt,
anyone can similarly recompute p; and verify the signatures,
thereby checking the public part and a commitment to the
private part of the transaction are committed in the ledger. In
particular, h{ may be recomputed from the ledger, enabling
the public verification of its integrity.

C. Checkpoints

As described in Section the node-join and recovery
protocols involve replaying the complete ledger to reconstruct
the current state of the key-value store. In addition to the
ledger that fully records its history for auditing purposes, the
nodes may also periodically save the state of the store at a
given index (partially-encrypted under keys derived from sg)
and execute a transaction to record the resulting authentication
hash in a table. The checkpoint is considered complete once
the enclosing transaction commits.

Joining nodes can then start replaying the ledger from any
recent complete checkpoint provided by the host. Similarly,
backups that are lagging behind the current consensus may
use a complete checkpoint to catch up—this also helps bound
the memory required to withstand Byzantine attacks.

After confirming that the ledger records a complete check-
point, replicas may safely erase earlier encryption secrets
Sd'<q- In combination with rekeying, this enables forward se-
crecy for application data that has been deleted or overwritten
in the store.

VI. REPLICATION PROTOCOL

As outlined in Section [[I-B] the replication protocol persists
key-value updates in various tables, grouped into transac-
tions T7;, then into batches (to amortize the cost of signatures)
then into views (to support changes of primary). Within each
view, all transactions are proposed by the primary, forwarded
to the backups, then committed or discarded. Integrity means
that the series of transactions follows both the protocol and
application logics. Consistency means that all nodes observe
prefixes of the same series of committed transactions. Safety
is both integrity and consistency.

The replication protocol has two main configurations. We
describe first a generic core protocol, then its configuration
details. In its Byzantine configuration (Section [VI-B), n
replicas ensure (1) safety against f < n/3 corrupt replicas
and any number of crashes; (2) confidentiality against any
crashes; and (3) progress against f < n/3 corrupt replicas.
In its simpler Crash-Fault configuration (Section [VI-A), for
which we present a performance evaluation, n replicas ensure
progress against f < n/2 crashes, but they provide safety and
progress only against TEE crashes.

In all configurations, the protocol persists a ledger that
enables anyone either to verify that the protocol ran correctly
or to blame corrupt nodes that contributed to faulty quorums.
To this end, the ledger records the signed payload of protocol
messages into primitive tables (omitting any parts of the
message that can be recomputed from prior records in the

ledger). We describe these tables below. Recall that we write
{r : v} for message v signed with the private key of node r.

LOG stores {p : logw,1, p;} when primary p in view v ends
a transaction at index ¢ with Merkle-tree root p;. The
contents of the ledger determine the signed values of p,
v, i, and p;. The primary for view v signs at most once for
each transaction index 7, and typically signs large batches
of transactions jointly authenticated by p;.

ACK stores r — i, {r : ackv,p, i, p;} when backup r ver-
ified and recorded transactions proposed by primary p
in view v ending with a LOG record at index ¢ with
root p;. The record includes 7 and the signature, whereas
the ledger determines the current values of p, v, and the
root p; being acknowledged.

The primary ends every batch of transactions with optional,
signed ACKs received from its backups (referring to LOGs at
prior indexes in the view) followed by its own signed LOG.

In CFT configurations, we say that a transaction j commits
once the ledger records ACKs and a LOG for a quorum of
replicas with the same view number, and any indices ¢ > j
(where the Merkle tree with root p; extends the one with
root p;). BFT configurations require a stronger condition for
commitment: the ledger must record ACKs and a LOG for a
quorum of replicas with indices greater than an index that
satisfies the CFT condition for commitment.

Our next table supports view changes by recording the local
state of replicas for prior views:

VIEW stores 7 — w, Pr_w,{r: vieww,P._,} when
replica » moved to view w after signing transactions in
earlier views summarised in P,_,,,. The details of the
summary P,_,,, depend on the protocol configuration.

In the ledger, every view w starts with a ‘view-change’ trans-
action that includes a quorum of supporting VIEWs followed
by a first LOG of the new primary that proposes to resume in
view w at a given index and root. This first transaction must
justify any resulting truncation of prior views.

The last table supports dynamic reconfiguration:

CONFIG stores ¢ — N when c is the next configuration identi-
fier and N is a subset of trusted replica identifiers, subject
to governance. A configuration stored in CONFIG is active
until the next configuration commits, with usually one or
two active configurations at a time.

The initial transaction in the ledger is special, of the form

NODE 0 — k¢, trusted;
CONFIG 0 — {0};

VIEW 0— {0:view0};
LOG {0:1090,0,p0}

We are now ready to describe the core replication protocol
followed by (honest) replicas. Every replica in state pending
or trusted maintains local state: a current view v; a well-
formed ledger (with a branch for each recent view w < v);
for each replica, any VIEW record last sent or received; for
each recent view w < v, any j, p; signed last. As a function
of each branch of its local ledger, it also maintains current
configuration set(s) N, view w, primary p, index i, root p;,
and commit index c. (Replicas in state retired are safe to shut

down.) Their local state machine is as follows, starting as
backup:

In any state:
Receive, verify, and record a batch of transactions that
extends the ledger beyond its current commit index. If it
includes the first transaction in view w > v, set v := w
and become backup.
Receive and verify a VIEW message for w. If w > v
(and received f + 1 VIEW messages for w in the BFT
configuration), set v := w, update current VIEW message,
and (depending on the protocol configuration) become
backup. In all these cases, respond with current VIEW
message.
Timeout, set v := v + 1, update current VIEW message,
broadcast it, and (depending on the protocol configura-
tion) become candidate.
Exchange transactions with other replicas, answering at
least requests for transactions signed by the replica.
backup (initial state): Issue signed ACKs for any transaction
received in current view.

primary: Prepare and replicate transactions that extend the
current view. Echo ACKs and issue LOGs to complete
transaction batches and advance the commit index. Col-
lect ACKs from other replicas.

candidate: Receive and verify VIEWs for v. Request any
missing transaction that may not be truncated. Issue a
view-change transaction and become primary.

Except for the embedding of signed messages into the ledger,
the protocol is very close to RAFT in the CFT configuration
and PBFT in the BFT configuration.

A. Crash-Fault Tolerant Configuration

We first implemented a simple protocol configuration based
on RAFT [54]—we refer to their original paper for a detailed
design discussion and analysis. In this configuration, a quorum
consists of a strict majority of replicas: f + 1 out of n =
2f 4+ 1. Compared with RAFT, CCFmessages are signed to
allow blaming corrupt replicas during auditing.

View changes are randomized: any replica that times out
becomes candidate for the next view, with thresholds such
that, with high probability, a single candidate appears. For
each replica r, the VIEW payload P,_,,, records the last view
v < w, index j, and Merkle-tree root p; signed by r in any
LOG or ACK message. A valid view-change transaction must
include messages from a quorum of replicas such that the
contents w, ¢, p; in the first signed LOG of the new primary
proposes to continue the ledger from a state at least as up-to-
date as as any v, j, p; in the supporting VIEWs. This simple
mechanism ensures that the new primary can immediately start
processing new transactions, without the need to fetch batches
stored at other replicas.

It is possible to configure CCF to have signatures only on
LoGs but not on ACKs. This does not affect the safety and
liveness guarantees of the protocol, but it may prevent blaming
corrupt backups during auditing.

B. Byzantine-Fault Tolerant Configuration

This more defensive configuration is based on PBFT [16].
A quorum now consists of two thirds of the replicas: 2f + 1
out of n = 3f+1, although a smaller quorum of f+1 replicas
may suffice to confirm the correctness of a computation given
its result.

The core replication protocol in its Byzantine configuration
requires two roundtrips between the primary and its backups to
record in the ledger signed evidence that a given transaction is
committed—that is, a sequence of 6 message flights from the
initial client request to the verifiable commit certificate from
the primary. We outline below an efficient mechanism adapted
from PBFT [[16] to return the same evidence to clients in just 4
message flights. We leave its implementation and performance
evaluation as future work.

e For each batch in view v and transaction index %, before
signing its LOG or ACK message, replica » computes a
nonce n, ; = KDF[nj|(v|i) using a local secret nj,
computes its hash h;, = H(nj), and appends it to
the signed payload. The replica communicates hy, ; with
the signature to enable its immediate verification, but
temporarily withholds ny ;.

« Backups send their ACK messages and hashed nonce to
all other replicas (not just to the primary).

« Replicas receive these ACKs and verify that their signa-
tures match the message they sent. They release their
nonce n,, ; once they have collected 2 +1 such messages
including their own, and may immediately send it with
their earlier signature to the clients of this batch.

o A client can gather signed evidence of commitment by
collecting 2f + 1 matching signatures with the corre-
sponding nonces (together with auxiliary hashes to relate
committed transactions to their signed root, as described
in Section . In combination, these signatures ensure
that the transaction will be committed, since at least one
honest signer that released the nonce will be part of any
view change quorum.

o As before, the primary regularly records these signatures
in the ledger, to further ensure that the commitment of
these transactions become universally verifiable.

This protocol configuration supports robust view changes
that guarantee safety and liveness if fewer than 1/3 of the
replicas are corrupt. The primary for every view is pre-
determined, using the next replica in round-robin according to
their ordering in the NODE table. This is important to prevent
malicious nodes from being primaries indefinitely.

The summary recorded in VIEW messages is adapted as
follows: P,._,,s records v, 1, py,i, P, w, j, pw,; Where replica r
changed to view v, where v and ¢ are the largest view and
index within that view for which r released a nonce and p, ;
is the corresponding Merkle-tree root, where P is a set with
one signed LOG and 2f signed ACKs from different replicas
for (v, 1, py,;), and where j and w are the last view and index
within that view for which r signed a LOG or ACK (with j >3
and w > v) and p,, ; is the corresponding Merkle-tree root.

A valid view-change transaction to v’ consists of a quorum
of VIEW messages and a first LOG message from the primary

for v’ continuing the ledger from some (v°,4%, p,0 ;0) that (1)
extends a (v, 1, p, ;) chosen from one of the VIEW messages
such that it has the largest ¢ from among those with the
largest v, and (2) includes the longest prefix of the (w, j, pw ;)
that is shared by at least f + 1 included VIEW messages and
extends (v, 1, py ;).

The backups check the validity of the view-change trans-
action and send ACKs to the primary. Both the primary and
the backups update their state to match (v°,i%, p,0 ;0). First,
they discard transactions in forks from the ledger and undo
the effects of those transactions on the key-value store. Then
they add new transactions to the ledger and execute those
transactions to reflect their effects in the key-value store.

The BFT configuration tolerates malicious failures but re-
quires more replicas and more messages to tolerate the same
number of failures. Both configurations return a commitment
receipt to the client in two round trips and require a single
signature per replica per batch of transactions, but the BFT
configuration requires verifying more signatures. Additionally,
BFT backups need to execute the commands in a transaction
batch to verify the correctness of the write set generated by
the primary before signing an acknowledgment.

VII. IMPLEMENTATION

We implemented CCF in C++17 using the Open Enclave
SDK] targeting the Intel SGX TEE. Using CCF on other
TEEs will be possible when Open Enclave supports them, with
relatively little additional porting work.

The code is split between the trusted enclave and the
untrusted host. The well-known CLOC tool counts roughly
14,000 lines of code (LOC) for the enclave, 1,900 LOC for
the host, and 5,800 LOC shared by both. The numbers exclude
the Open Enclave SDK, optional transactions engines (e.g., an
EVM and the Lua interpreter) and third-party code, e.g. libuv.

The source code and its documentation are available
at https://github.com/Microsoft/CCF. Our EVM
implementation, eEVM (roughly 2,800 LOC), is available at
https://github.com/Microsoft/eEVM.

A. Untrusted Host

The host is responsible for handling I/O for the enclave. If
the host is compromised, it can cause a denial of service by
not handling I/0. However, the data the host handles is always
integrity protected, and, for confidential data, is encrypted,
such that the host cannot alter communications or observe
confidential communications.

Communication Between Host and Enclave. The host and
enclave communicate via a pair of lock-free multi-producer,
single-consumer ringbuffers rather than via enclave transitions
(e.g., ECALL and OCALL on Intel SGX). This ringbuffer pair
acts as a virtual network interface, requiring communication
to be serialized and eliminating possible security bugs due
to pointer dereferencing inside the enclave. The serialization
performance cost is ameliorated by (i) not paying the per-
formance cost of enclave transitions and (ii) communication

https://OpenEnclave.io

https://github.com/Microsoft/CCF
https://github.com/Microsoft/eEVM
https://Open Enclave.io

primarily being in the form of forwarding network traffic,
which is already serialized.

Network Traffic. The host manages both inbound and out-
bound network connections. The enclave can request, over the
ringbuffer, that the host listen on some port or connect to some
address and port pair. The host makes the necessary system
calls. When inbound data arrives, it is written to the ringbuffer
with a connection identifier. When the enclave places outbound
data in the ringbuffer, the host is responsible for writing it to
the appropriate connection.

Storage. The enclave writes ledger updates to the ringbuffer
and expects the host to extend the ledger on disk or other per-
sistent storage. The ledger data emitted is integrity protected
and the confidential portion is encrypted.

B. Trusted Enclave

The enclave is responsible for secure communications,
command execution, maintaining the key-value store, and
replication. Modules are placed inside the enclave when their
malicious operation would compromise the integrity or confi-
dentiality of the system.

Secure Channels. We ported the mbedTLS library to our
enclave environment. We use it to terminate TLS connections
inside enclaves and to manage public-key certificates. Hence,
the host observes only TLS negotiation and encrypted traffic.
We fix the choice of cryptographic ciphersuites to use ECDHE,
ECDSA, AES256-GCM, and SHA2. The elliptic curves used
are statically configurable. The TLS module authenticates the
connection and forwards plaintext data and peer identity to a
connection handling module, using the Server Name Indication
extension (SNI) to select the correct command interface: (i.e.,
“members”, “users”, or “nodes”). This is used for both client-
to-node connections and node-to-node connections when join-
ing a service, as described in Section Clients and nodes
then communicate via JSON-RPC over TLS.

Cryptography. We use formally verified, side-channel resis-
tant implementations of cryptographic algorithms from the
Everest project [[10]. We replaced some of the algorithms in
mbedTLS with their Everest implementations, both for perfor-
mance and for side-channel resistance. We also implemented
and verified a custom library for binary Merkle trees based
on the SHA2-256 compression function, with fast incremental
updates (up to 3M tx/s) and caching of intermediate hashes.

Command Execution Engines. Commands received via JSON-
RPC are handled by a command execution engine. Each type
of command can be handled by a different engine. When
building a service, the “nodes” and “members” engines are
fixed, while the “users” engine is specified by the service.
We implemented a C++ engine for “nodes” commands, and
ported the Lua virtual machine to the enclave for “members”
commands. A service can handle “users” commands using
custom C++, Lua, an EVM we implemented specifically for
use inside an enclave, or any other engine provided by the
service developer atop the CCFexecution engine APIL.

Transactional Key-Value Store. The current state is reflected as
a collection of key-value stores (i.e., tables) in enclave mem-
ory. These transactional key-value stores are implemented as a
sequence of compressed hash-array mapped prefix trees [64],
giving a compact representation of locally but not globally
committed changes using structural sharing. Transactions can
be processed in parallel, and commit locally when they have
no conflicts. The key-value store maintains both opacity and
strict serializability. A locally committed transaction receives
a monotonic index, establishing a total order. These write sets
are encrypted, hashed, inserted into the Merkle tree, and then
sent, in order, both as deltas to the replication module and as
ledger updates to the host.

Replication. Replication messages are integrity protected us-
ing keys derived from s4, but are not encrypted and are sent
over raw TCP. This is an optimization: when a node sends a
sequence of (already encrypted and integrity protected) state
deltas to another node, it does not reencrypt them. Instead,
it sends an integrity protected header (containing the index
range of deltas to be sent) to the host, which then appends
the requested state deltas, as read from the local ledger. The
receiving node verifies the state deltas on receipt, applies them
to its key-value store and appends them to its local ledger.

Command Forwarding. Commands can be submitted to any
node configured to run the service. If the node is not the
current primary, it verifies the command signature if one
is present, it authorizes the command, and, if successful, it
detects whether the command is read-only or may write to
the key-value store. If the command is read-only, it executes
it locally. Otherwise, it forwards it for execution on the
primary on a secure channel. This allows clients to be unaware
of which node is the current primary, and enables us to
distribute the signature verification workload and the read-only
command workload across nodes.

VIII. EVALUATION

We now evaluate the performance of our implementation
of CCF. We measure a crash-fault-tolerant configuration in
which only primary signatures are turned on (see Section [VI).
To enable comparison with related work, we selected the fol-
lowing realistic benchmarks: (1) Small Bank [3]] was originally
proposed as a SQL benchmark. It involves three tables and is
designed to mirror a small set of simple banking operations.
We use Small Bank in three configurations: (A) the database
fits into enclave memory; (B) the database does not fit and
the client uses random accounts to maximize page faults;
(C) the database fits and the client explicitly signs every
command in addition to sending it over TLS and the service
checks and stores every signature. (2) ERCZq] is a standard
Ethereum smart contract for token transfer. We invoke its
Get and Transfer functions. (3) CryptoKittiedis a popular
game about breeding cats implemented as a complex Ethereum
smart contract. We invoke the mixGenes function, which is

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.cryptokitties.com

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.cryptokitties.com

10°
Q2
k]
£
=
3104 F 4
<
o
3
: l
e
=]
103 e ot Y Y Y
S &' \ Q
& o & A gt N

Fig. 3. Throughput measured for 9 CCF nodes and 1 client from our VM
pool; all values are averaged over 5 runs with 100,000 transactions each. The
primary issues signed 1og messages for batches of 10,000 transactions.

104
£
0% 3
9
g102 | l .
: I
10t et Y Y Y
22 S N
O\L\“\ 0“60 o 6?“ %?5(* %’6‘\\& %’&*
X N\ \ N\
) cr Cr @ @ @
[oS] & <« o o 2\

Fig. 4. Global commit latency of CCF; same setting as before

significantly more memory and compute intensive than the
functions in ERC20.

We run all experiments in Microsoft Azure on SGX-enabled
VMs with four cores of an Intel Xeon E-2176G 3.70GHz CPU,
16GB RAM, and Ubuntu 18.04.2 LTS. We use 10 VMs—9
replica nodes and 1 client—with 4 servers on the east coast of
the United states and 5 in western Europe. In all experiments,
we compose our VM pool evenly from both locations. This is
the most durable configuration, but it also exhibits the worst
performance characteristics.

Figures [3] and [] show the throughput and latency charac-
teristics of CCF for the described experiments. Latency is
averaged over all transactions in an experiment and counts
the time from sending a command on the client to receiving
a global commit confirmation. For smaller number of nodes,
performance characteristics are similar. The comparably low
performance of Small Bank (B) is not unexpected, as SGX
page-faults are very expensive [55].

To put these numbers into perspective, we now compare
them with related work. (We give a general overview on related
work in Section [[X]) Dinh et al. [24] use Small Bank with 8
servers and 8 clients in one data center to compare (1) Hy-
perledger Fabric [5] version 0.6.0-preview, private Ethereum
deployments using (2) the geth client version /.4.8 and (3)
the Parity client version /.6.0, and (4) an unspecified version
of H-Store [34]], a state-of-the-art sharded database. Each of
their servers is equipped with an Intel Xeon E5-1650 3.5GHz
CPU with 32GB RAM. On this configuration, Hyperledger
Fabric is reported to achieve a throughput of 1,122 transactions
per second (tx/s), geth 1,122 tx/s, Parity 46 tx/s, and H-Store
21,596 tx/s. FastFabric [30] improves the throughput of Hy-
perledger Fabric. It achieves 19,112 tx/s running transactions
that transfer funds between two accounts on one client and 14

servers under the same switch. These systems do not provide
confidentiality for smart contract execution.

Other than the aforementioned systems, the Ekiden system
provides confidentiality for smart contract execution, using
Intel SGX. For a setup with one compute enclave running
on an Intel Core i7-6500U CPU with 8GB RAM, periodi-
cally submitting state updates to a four-node Tendermint [|14]]
consensus network which are all in the same data center,
Cheng et al. [18] report ca. 1,000 tx/s throughput and ca.
0.6s latency for ERC20 Get and ca. 600 tx/s and ca. 0.6s
latency for ERC20 Transfer. Solidus [17] is a confidential
permissioned ledger that achieves consensus among a large
number of users through a small group of banks. Solidus hides
transaction values and the identities of transaction entities. The
use of cryptographic primitives such as Oblivious RAM and
Schnorr signatures results in a throughput of < 9 tx/s.

In comparable single data-center setups, CCF achieves
57,641 tx/s throughput and 153ms latency for Small Bank
with eight servers and 17,708 tx/s throughput and 57ms
latency for ERC20 Get and 5,963 tx/s throughput and 276ms
latency for ERC20 Transfer with five servers. While all
discussed systems aim at different use cases and offer different
guarantees in terms of fault tolerance and security, we believe
that these numbers demonstrate the efficacy of CCF.

IX. RELATED WORK

Bitcoin [52] created a cryptocurrency using a proof-of-work
protocol to ensure that users agree on a set of transactions.
Bitcoin generates a new block every 10 minutes and users
typically wait for 6 blocks before a transaction is considered
committed, resulting in confirmation latencies in the order of
an hour. Many other cryptocurrencies adopted consensus based
on proof-of-work. Ethereum [67] also uses proof-of-work, but
supports general transactions.

Several recent systems propose higher-performance
blockchains. Honey Badger [50] proposes using a Byzantine
fault-tolerance protocol to build a cryptocurrency using a
designated set of servers. RScoin [23] proposes a centrally
banked cryptocurrency based on a variant of the two-phase
commit protocol. In the permissioned setting, Hyperledger
Fabric [5] decomposes the tasks of executing client commands
and ordering the corresponding transactions. The ordering
service may be a single trusted server or a CFT or BFT
network of nodes. Bitcoin-NG [25]] proposes using proof-
of-work to elect a leader that then publishes blocks of
transactions. Hybrid consensus [57] can periodically select a
group of nodes using proof-of-work and then runs Byzantine
agreement amongst those nodes to confirm transactions, until
a new group is chosen. The permissioned SBFT [32] proposes
a variant of PBFT [16] that scales to larger consensus groups.
The unpermissioned Byzcoin [39] also builds on PBFT
and dynamically forms consensus groups. Algorand [2§]]
uses a mechanism based on Verifiable Random Functions
to select the nodes that participate in Byzantine agreement
in a private and non-interactive way, which is important to
prevent an adversary from targeting committee members.
Elastico [48]], Omniledger [40] and Chainspace [2] support

sharding to further improve performance. Several systems
also propose replacing proof-of-work with proof-of-stake
protocols 8], [28]], [38]] to improve performance. While all
of these systems provide higher performance than proof-of-
work-based blockchains, unlike CCF, none of them provide
strong confidentiality guarantees.

Some other blockchain designs either only provide confi-
dentiality for limited scenarios or do not achieve high trans-
action throughput [5[I, [17]], [41]I, [59], [73[I, [75]-[77]l.

Zerocash [59]] provides privacy for financial transactions
while Hawk [41]] provides for generic privacy-preserving smart
contracts. However, both of these works use complex crypto-
graphic primitives which reduce performance. CCF provides
confidentiality and throughput that is several orders of magni-
tude higher than these systems, albeit by trusting TEEs.

Several systems have proposed using TEEs to improve the
efficiency of Byzantine fault tolerance protocols [7], [19], [20],
[33], 135, [46], [65], [66]. Recently, TEEs have also been used
in blockchains, but to achieve goals different from CCF’s.
REM [72]] proposed a new blockchain mining framework
that uses SGX enclaves, but still relies on inefficient proof
of (useful) work for consensus. Hyperledger Sawtooth [74]]
proposes using a proof-of-elapsed-time (PoET) protocol based
on running code that idles for a random amount of time inside
an SGX enclave to elect a consensus leader, but does not
provide any confidentiality guarantees. Teechan [47] proposes
to implement payment channels that perform off-chain trans-
actions in TEEs and only add a summary of transactions on
Bitcoin. Proof of Luck [51] is a permissionless blockchain
protocol which relies on Intel SGX for random leader election
but otherwise uses a proof-of-work protocol [52f]. Tesseract [9]
uses a TEE to provide a cross-chain cryptocurrency exchange
service. Town Crier [71]] proposes using enclaves to authen-
ticate data feeds from websites. All of these systems use
TEEs to achieve desirable properties in a blockchain, but
they do not provide confidentiality guarantees. Ekiden [18]]
runs smart contracts off-chain in stateless TEEs, which, after
each execution, post encrypted state updates to an immutable
ledger that provides proof of publication. The keys used for the
encryption of state updates are managed by a permissionless
network of key management TEEs. In a similar vein, Kaptchuk
et al. [37] propose to persist TEE state on ledgers that provide
proof of publication. To prevent rollbacks, they eliminate non-
determinism and require that each query is committed to the
blockchain in advance.

X. CONCLUSION

We presented the design and implementation of CCF, a
new framework for consortium-based blockchains built on
top of a network of hardware-protected TEEs. CCF enables
confidential replicated services with dynamic reconfiguration
and recovery. It accounts for a variety of attacker models,
ranging from crashes to hardware compromise. It carefully
restricts the privileges of TEEs that run its service and
members that manage its consortium, and it records sufficient
signed evidence to blame TEEs that deviate from its proto-
cols. Experimental results show that CCF supports diverse

blockchain applications and achieves performance orders of
magnitude better than other blockchains with confidentiality
guarantees. We are developing an open-source implementation
of CCF to enable developers to build ledgers that achieve
availability, confidentiality, verifiability, high performance, and
flexible governance.

Acknowledgments. We thank Antoine Delignat-Lavaud, Samer
Falah, Chris Klepper, Li Li, Zhen Li, Marc Mercuri, and Mark
Novak for their contributions and their feedback on this report.

APPENDIX
REFERENCES

[1] Visa inc. at a glance. |https://usa.visa.com/dam/VCOM/download/
corporate/media/visa-fact-sheet-Jun2015.pdf (Accessed on 11/30/2018).

[2] AL-BASSAM, M., SONNINO, A., BANO, S., HRYCYSZYNY, D., AND
DANEZIS, G. Chainspace: A sharded smart contracts platform. arXiv
preprint arXiv:1708.03778 (2017).

[3] ALOMARI, M., CAHILL, M., FEKETE, A., AND ROHM, U. The cost of
serializability on platforms that use snapshot isolation.

[4] ANATIL I., GUERON, S., JOHNSON, S., AND SCARLATA, V. Innovative
technology for CPU based attestation and sealing. In International
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP) (2013).

[5] ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN, C., CHRIS-
TIDIS, K., DE CARO, A., ENYEART, D., FERRIS, C., LAVENTMAN, G.,
MANEVICH, Y., ET AL. Hyperledger Fabric: a distributed operating
system for permissioned blockchains. In European Conference on
Computer Systems (EuroSys) (2018).

[6] ARM LTD. Building a secure system using TrustZone technology, April
2009. PRD29-GENC-009492C.

[71 BEHL, J., DISTLER, T., AND KAPITZA, R. Hybrids on steroids: SGX-
based high performance BFT. In European Conference on Computer
Systems (EuroSys) (2017).

[81 BENTOV, I., GABIZON, A., AND MIZRAHI, A. Cryptocurrencies
without proof of work. In Financial Cryptography and Data Security
(FC) (2016).

[9] BENTOV, 1., JI, Y., ZHANG, F., L1, Y., ZHAO, X., BREIDENBACH,

L., DAIAN, P., AND JUELS, A. Tesseract: Real-time cryptocurrency

exchange using trusted hardware. Cryptology ePrint Archive, 2017.

https://eprint.iacr.org/2017/1153.

BHARGAVAN, K., BOND, B., DELIGNAT-LAVAUD, A., FOURNET, C.,

HAWBLITZEL, C., HRITCU, C., ISHTIAQ, S., KOHLWEISS, M., LEINO,

R., LORCH, J., ET AL. Everest: Towards a verified, drop-in replacement

of HTTPS. SNAPL (2017).

BITCOINWIKI. Confirmation. https://en.bitcoin.it/wiki/Confirmation.

BRASSER, F., CAPKUN, S., DMITRIENKO, A., FRASSETTO, T., KOs-

TIAINEN, K., MULLER, U., AND SADEGHI, A.-R. DR.SGX: Hardening

SGX enclaves against cache attacks with data location randomization.

arXiv preprint arXiv:1709.09917 (2017).

BRASSER, F., MULLER, U., DMITRIENKO, A., KOSTIAINEN, K., CAP-

KUN, S., AND SADEGHI, A.-R. Software Grand Exposure: SGX cache

attacks are practical. In USENIX Workshop on Olffensive Technologies

(WOOT) (2017).

BUCHMAN, E. Tendermint: Byzantine Fault Tolerance in the Age of

Blockchains. PhD thesis, 2016.

BULCK, J. V., WEICHBRODT, N., KAPITZA, R., PIESSENS, F., AND

STRACKX, R. Telling your secrets without page faults: Stealthy

page table-based attacks on enclaved execution. In USENIX Security

Symposium (2017).

CASTRO, M., AND LISKOV, B. Practical byzantine fault tolerance. In

USENIX Symposium on Operating Systems Design and Implementation

(OSDI) (1999).

CECCHETTI, E., ZHANG, F., J1, Y., KOSBA, A., JUELS, A., AND SHI,

E. Solidus: Confidential distributed ledger transactions via PVORM.

Cryptology ePrint Archive 317 (2017).

CHENG, R., ZHANG, F., Kos, J., HE, W., HYNES, N., JOHNSON,

N., JUELS, A., MILLER, A., AND SONG, D. Ekiden: A platform for

confidentiality-preserving, trustworthy, and performant smart contract

execution. arXiv preprint arXiv:1804.05141 (2018).

CHUN, B.-G., MANIATIS, P., SHENKER, S., AND KUBIATOWICZ, J.

Attested append-only memory: Making adversaries stick to their word.

In ACM SIGOPS Operating Systems Review (2007).

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://eprint.iacr.org/2017/1153
https://en.bitcoin.it/wiki/Confirmation

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

Name Introduced in ... | Description

CERTCONFIG | Section [III-D| Configuration of embedded certificate store

CERT Section [[II-Dj Certificates in use, including root certificates

CRL Section [III-D Certificate revocation lists in use

MEMBER Section [[II-A| Past and present members of the service

USER Section [[TI-A| Past and present users of the service

RULE Section [[II-E} Configurable governance rules

PROPOSAL Section [III- Past and present member proposals

VOTE Section [ITI-E] Votes on member proposals

MEMBERACK | Section [[lI-B Signed ledger acknowledgements from members

CODEID Section [TV-B| Past and present enabled versions and digests of TEE code
SERVICE Section [TV-B| Past and present identity certificates of the service

NODE Section [[V-D Past and present nodes of the service

SECRET Section [[V-D Past and present data secrets (encrypted to the nodes)
SHARE Section [IV-G Past and present recovery key shares (encrypted to the members)
REQUEST Section [V-B Optional record of signed client request

RESPONSE Section [V- Optional record of service response

LOG Section [VI] Signed ledger 1og messages of the primary

ACK Section Signed ledger ack messages of the backups

VIEW Section Signed view messages

TABLE A.1
SUMMARY OF CONFIGURATION AND GOVERNANCE TABLES IN CCF

CORREIA, M., NEVES, N. F., AND VERISSIMO, P. How to tolerate
half less one Byzantine nodes in practical distributed systems. In IEEE
International Symposium on Reliable Distributed Systems (2004).
COSTAN, V., AND DEVADAS, S. Intel SGX explained. Cryptology
ePrint Archive 86 (2016).

COSTAN, V., LEBEDEV, 1. A., AND DEVADAS, S. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security
Symposium (2016).

DANEZIS, G., AND MEIKLEJOHN, S. Centrally banked cryptocurren-
cies. In Symposium on Network and Distributed System Security (NDSS)
(2016).

DINH, T. T. A., WANG, J., CHEN, G., L1U, R., Ool, B. C., AND TAN,
K.-L. BLOCKBENCH: A framework for analyzing private blockchains.
In ACM SIGMOD International Conference on Management of Data
(2017).

EvAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE, R.
Bitcoin-NG: A scalable blockchain protocol. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2016).
FERRAIUOLO, A., BAUMANN, A., HAWBLITZEL, C., AND PARNO, B.
Komodo: Using verification to disentangle secure-enclave hardware from
software. In ACM Symposium on Operating Systems Principles (SOSP)
(2017).

Fu, Y., BAUMAN, E., QUINONEZ, R., AND LIN, Z. SGX-LAPD:
thwarting controlled side channel attacks via enclave verifiable page
faults. In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID) (2017).

GILAD, Y., HEMO, R., MICALL S., VLACHOS, G., AND ZELDOVICH,
N. Algorand: Scaling Byzantine agreements for cryptocurrencies. In
ACM Symposium on Operating Systems Principles (SOSP) (2017).
GOODMAN, L. M. Tezos - a self-amending crypto-ledger, 2014.
GORENFLO, C., LEE, S., GOLAB, L., AND KESHAV, S. Fastfabric:
Scaling hyperledger fabric to 20,000 transactions per second. arXiv
preprint arXiv:1801.00910 (2019).

GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O., HALLER,
I., AND COSTA, M. Strong and efficient cache side-channel protection
using hardware transactional memory. In USENIX Security Symposium
(2017).

GUETA, G. G., ABRAHAM, I., GROSSMAN, S., MALKHI, D., PINKAS,
B., REITER, M. K., SEREDINSCHI, D.-A., TAMIR, O., AND TOMESCU,
A. SBFT: a scalable decentralized trust infrastructure for blockchains.
arXiv preprint arXiv:1804.01626 (2018).

JIA, Y., TOPLE, S., MOATAZ, T., GONG, D., SAXENA, P., AND LIANG,
Z. Robust synchronous P2P primitives using SGX enclaves. Cryptology
ePrint Archive (2017). https://eprint.iacr.org/2017/180.pdf.

KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN, A.,
ZDONIK, S., JONES, E. P. C., MADDEN, S., STONEBRAKER, M.,
ZHANG, Y., HUGG, J., AND ABADI, D. J. H-Store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB
Endow. 1, 2 (2008).

(35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

KApPiTZA, R., BEHL, J., CACHIN, C., DISTLER, T., KUHNLE, S.,
MOHAMMADI, S. V., SCHRODER-PREIKSCHAT, W., AND STENGEL,
K. CheapBFT: resource-efficient Byzantine fault tolerance. In European
Conference on Computer Systems (EuroSys) (2012).

KAPLAN, D., POWELL, J., AND WOLLER, T. AMD memory encryp-
tion, April 2016. white paper.

KAPTCHUK, G., MIERS, 1., AND GREEN, M. Giving state to the
stateless: Augmenting trustworthy computation with ledgers. Cryptology
ePrint Archive, Report 2017/201, 2017. https://eprint.iacr.org/2017/201.
Kiayias, A., KONSTANTINOU, I., RUSSELL, A., DAVID, B., AND
OLIYNYKOV, R. Ouroboros: A provably secure proof-of-stake
blockchain protocol. Cryptology ePrint Archive 889 (2016).
KokoRIS-KoGIAS, E., JovaNovic, P., GAILLY, N., KHOFFI, I.,
GASSER, L., AND FORD, B. Enhancing bitcoin security and per-
formance with strong consistency via collective signing. In USENIX
Security Symposium (2016).

KokoRris-KoGias, E., JovaNovic, P., GASSER, L., GAILLY, N.,
SYTA, E., AND FORD, B. OmniLedger: A secure, scale-out, decentral-
ized ledger via sharding. In IEEE Symposium on Security and Privacy
(S&P) (2018).

KoOSBA, A., MILLER, A., SHI, E., WEN, Z., AND PAPAMANTHOU, C.
Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In IEEE Symposium on Security and Privacy (S&P)
(2016).

LAMPORT, L. The part-time parliament.
Computer Systems (TOCS) 16, 2 (1998).
LAMPORT, L., MALKHI, D., AND ZHOU, L. Reconfiguring a state
machine. ACM SIGACT News 41, 1 (2010).

LAMPORT, L., SHOSTAK, R., AND PEASE, M. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems
(TOPLAS) 4, 3 (1982).

LEE, S., SHIH, M.-W., GERA, P., KimM, T., KiM, H., AND PEINADO,
M. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In USENIX Security Symposium (2017).

LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND MOSCIBRODA, T.
TrInc: Small trusted hardware for large distributed systems. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)
(2009).

LIND, J., EYAL, 1., PIETZUCH, P., AND SIRER, E. G. Teechan:
Payment channels using trusted execution environments. arXiv preprint
arXiv:1612.07766 (2016).

Luu, L., NARAYANAN, V., ZHENG, C., BAWEJA, K., GILBERT, S.,
AND SAXENA, P. A secure sharding protocol for open blockchains.
In ACM Conference on Computer and Communications Security (CCS)
(2016).

MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., Rozas, C.,
SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR, U. Innovative
instructions and software model for isolated execution. In International
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP) (2013).

ACM Transactions on

https://eprint.iacr.org/2017/180.pdf
https://eprint.iacr.org/2017/201

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]
[76]
(771
[78]

MILLER, A., XIA, Y., CROMAN, K., SHI, E., AND SONG, D. The
honey badger of bft protocols. In ACM Conference on Computer and
Communications Security (CCS) (2016).

MILUTINOVIC, M., HE, W., WU, H., AND KANWAL, M. Proof of luck:
An efficient blockchain consensus protocol. In Workshop on System
Software for Trusted Execution (SysTEX) (2016).

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system, 2008.
OHRIMENKO, O., SCHUSTER, F., FOURNET, C., MEHTA, A.,
NOWOZIN, S., VASWANI, K., AND COSTA, M. Oblivious multi-party
machine learning on trusted processors. In USENIX Security Symposium
(2016).

ONGARO, D., AND OUSTERHOUT, J. K. In search of an understandable
consensus algorithm. In USENIX Anual Technical Conference (2014).

ORENBACH, M., LIFSHITS, P., MINKIN, M., AND SILBERSTEIN, M.
Eleos: ExitLess OS services for SGX enclaves. In European Conference
on Computer Systems (EuroSys) (2017).

OwusvU, E., GUAJARDO, J., MCCUNE, J., NEWSOME, J., PERRIG, A.,
AND VASUDEVAN, A. Oasis: On achieving a sanctuary for integrity and
secrecy on untrusted platforms. In ACM Conference on Computer and
Communications Security (CCS) (2013).

PAss, R., AND SHI, E. Hybrid consensus: Efficient consensus in
the permissionless model. In International Symposium on DIStributed
Computing (DISC) (2017).

R.C.MERKLE. A digital signature based on a conventional encryption
function. In Advances in Cryptology—CRYPTO (1988).

SASSON, E. B., CHIESA, A., GARMAN, C., GREEN, M., MIERS, I.,
TROMER, E., AND VIRZA, M. Zerocash: Decentralized anonymous
payments from Bitcoin. In IEEE Symposium on Security and Privacy
(S&P) (2014).

SCHNEIDER, F. B. Timplementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys 22, 4 (1990).

SCHUSTER, F., CosTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M. VC3:
Trustworthy data analytics in the cloud using SGX. In IEEE Symposium
on Security and Privacy (S&P) (2015).

SHIH, M.-W., LEE, S., KM, T., AND PEINADO, M. T-SGX: Eradicat-
ing controlled-channel attacks against enclave programs. In Symposium
on Network and Distributed System Security (NDSS) (2017).

SINHA, R., COSTA, M., LAL, A., LOPES, N., SESHIA, S., RAJAMANI,
S., AND VASWANI, K. A design and verification methodology for
secure isolated regions. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2016).

STEINDORFER, M. J., AND VINJU, J. J. Optimizing hash-array mapped
tries for fast and lean immutable JVM collections.

VERONESE, G. S., CORREIA, M., BESSANI, A. N., AND LUNG, L. C.
EBAWA: Efficient Byzantine agreement for wide-area networks. In
IEEE International Symposium on High-Assurance Systems Engineering
(HASE) (2010).

VERONESE, G. S., CORREIA, M., BESSANI, A. N., LUNG, L. C., AND
VERISSIMO, P. Efficient Byzantine fault-tolerance. IEEE Transactions
on Computers (2013).

WooD, G. Ethereum: A secure decentralised generalised transaction
ledger. |http://gavwood.com/Paper.pdf (accessed 16/10/2017). EIP-150
revision.

X1A0, Y., L1, M., CHEN, S., AND ZHANG, Y. Stacco: Differentially
analyzing side-channel traces for detecting SSL/TLS vulnerabilities in
secure enclaves. In ACM Conference on Computer and Communications
Security (CCS) (2017).

XU, Y., Cul, W., AND PEINADO, M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In /EEE
Symposium on Security and Privacy (S&P) (2015).

YANG, D., GAVIGAN, J., AND WILCOX-O’HEARN, Z. Survey of
confidentiality and privacy preserving technologies for blockchains,
2016.

ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND SHI, E.
Town crier: An authenticated data feed for smart contracts. In ACM
Conference on Computer and Communications Security (CCS) (2016).
ZHANG, F., EYAL, 1., ESCRIVA, R., JUELS, A., AND VAN RENESSE, R.
REM: Resource-efficient mining for blockchains. In USENIX Security
Symposium (2017).

Chain. https://chain.com.

Hyperledger Sawtooth Core. https://github.com/hyperledger/
sawtooth-core,

Multichain. https://github.com/MultiChain/multichain.

Quorum. https://github.com/jpmorganchase/quorum.

Ripple. https://ripple.com.

Sawtooth lake. https://sawtooth.hyperledger.org/docs/.

http://gavwood.com/Paper.pdf
https://chain.com
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/MultiChain/multichain
https://github.com/jpmorganchase/quorum
https://ripple.com
https://sawtooth.hyperledger.org/docs/

	Introduction
	Background
	Trusted Execution Environments (TEEs)
	Crash-Fault and Byzantine-Fault Tolerant Replication

	A Trusted Service and Key-Value Store
	The Clients
	The Store
	The Ledger
	Public-Key Infrastructure
	Remote Procedure Calls
	Governance

	Service Protocols
	Creating a Node
	Starting a Service
	Opening a Service
	Adding a Node to a Service
	Removing a Node from a Service
	Rekeying a Service
	Recovering a Service

	Ledger Encryption and Verifiability
	Ledger Encryption and Transaction Hashes
	Signed Receipts and Confidentiality
	Checkpoints

	Replication Protocol
	Crash-Fault Tolerant Configuration
	Byzantine-Fault Tolerant Configuration

	Implementation
	Untrusted Host
	Trusted Enclave

	Evaluation
	Related Work
	Conclusion
	Appendix
	References

